Effects of water table dynamics on regional climate: A case study over east Asian monsoon area
نویسندگان
چکیده
[1] Groundwater is an important component of the hydrologic cycle, and its anomaly will result in variations of soil moisture, water, and energy balances between the land surface and atmosphere, which ultimately influence climate. In this study, we implement a groundwater model into the regional climate model RegCM3, which is called RegCM3_GW, and investigate the effects of water table dynamics on regional climate. Numerical experiments by RegCM3_GW and RegCM3 over the east Asian monsoon area show that incorporating the water table dynamics into the regional climate model reduces the systematic biases of the simulated precipitation by 38.5% and 39.8% over semiarid and humid regions, respectively, and increases the bias slightly by 5.6% over semihumid regions. To seek the reasons for the differences of simulated precipitation, we analyze the atmospheric water vapor budget and the local water cycle among the water table, soil moisture, evapotranspiration (ET), and convective precipitation. It is found that the top and root zone soil layers become wetter and enhance the bare soil evaporation but do not always increase the transpiration. Because of the variations of each ET’s component, the obvious enhancements of ET occur in semiarid regions and contribute to more instable profiles of pseudoequivalent potential temperature. The atmospheric moisture budget analysis indicates that the recycling rate and precipitation efficiency increase greatly over semiarid regions, which presents a local aquifer-atmosphere feedback, while the variations of atmospheric water vapor transport control the development of precipitation over semihumid and humid regions. Therefore, the effects of water table dynamics on regional climate consist of the local aquifer-atmosphere interaction and the changes of circulation originated from ambient aquifer-atmosphere interaction, and the latter factor plays an important role in the monsoon area. Sensitivity of the results to a change in convection parameterization is also explored.
منابع مشابه
THE JOINT AEROSOL– MONSOON EXPERIMENT A New Challenge for Monsoon Climate Research
Understanding the physical processes responsible for aerosol– monsoon water cycle interactions is fundamental to improving prediction and enhancing vigilance of climatic hazards in the Asian monsoon region. A ir pollution and monsoon floods and droughts are two of the most serious environmental threats to over 60% of the world population living in Asia. The increasing aerosol loading in Asian c...
متن کاملMonitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia
The Tibetan Plateau is an important water source in Asia. As the "Third Pole" of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanis...
متن کاملSensitivity of CWRF simulations of the China 1998 summer flood to cumulus parameterizations
Better understanding the dynamics of the East Asian monsoon system is essential to address its climate variability and predictability. Regional climate models are useful tools for this endeavor, but require a rigorous evaluation to first establish a suite of physical parameterizations that best simulate observations. To this end, the present study focuses on the CWRF (Climate extension of WRF) ...
متن کاملCorrelation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years
Understanding the past significant changes of the East Asia Summer Monsoon (EASM) and Winter Monsoon (EAWM) is critical for improving the projections of future climate over East Asia. One key issue that has remained outstanding from the paleo-climatic records is whether the evolution of the EASM and EAWM are correlated. Here, using a set of long-term transient simulations of the climate evoluti...
متن کاملLate Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data
Internal variability of the Asian monsoon system and the relationship amongst its sub-systems, the Indian and East Asian Summer Monsoon, are not sufficiently understood to predict its responses to a future warming climate. Past environmental variability is recorded in Palaeoclimate proxy data. In the Asian monsoon domain many records are available, e.g. from stalagmites, tree-rings or sediment ...
متن کامل